© MyMathsCloud

Sequences & Series: Sigma Notation

This sheet assumes that you already know how to deal with arithmetic and geometric series.

Table of Contents

1	Bronze4			
2	Silve	Silver		
3	Gold	d7		
	3.1	With Logs		
4	Diamond			
	4.1	With Logs		
	4.2	Two Series		
5	Cha	Challenges		
	5.1	Arithmetic		
	5.2	Geometric		

This is a long worksheet to cater for students that want extra practice. If you want a shortcut, but still be sure to cover one of each type then follow the pink highlighted questions.

- Higher level students should be able to do all questions up until diamond to be sure to get a 7. The challenge section is there for anyone brave enough ⁽²⁾
- o Standard level students should be able to do questions 1-36 and 41-42 to be sure to get a 7

Make sure you have covered the sequences and series: arithmetic and geometric worksheet first!

Reminders

© MyMathsCloud

What happens if we have more terms?

$$\sum_{r=1}^{r=50} (4r+1)$$

In English, this says replace every r starting from 1 in the expression (r + 1) and go all the way to 50. We add (\sum means add) all these terms found.

Step 1: Write a few terms out i.e. get rid of the sigma notation to see what the sequence looks like.

$$\sum_{r=1}^{50} (4r+1)$$

To do this we replace (4r + 1) with the values of rWe know r starts at 1 and ends at 50

$$(4+1) + (8+1) + (12+1) + \dots + (50+1)$$

Simplifying gives the sequence

This is arithmetic with a=5 and d=4 and n is 50 (50 terms). If you didn't realise there are 50 terms, you could set $u_n = 201$ using the formula and solve for n

Using s_n formula

$$s_{50} = \frac{50}{2} [2(5) + (50 - 1)(4)] = 25(10 + 196) = 5150$$

What happens if our series doesn't start from 1?

$$\sum_{r=5}^{r=80} 2(3^{r+1})$$

The sum says replace every r starting from 5

$$2(3^6) + 2(3^7) + 2(3^8) + \cdots$$

Way 1:

This is geometric since we are multiplying by 3 each time

$$r = \frac{2(3^7)}{2(3^6)} = 3$$

$$a = 2(3^6) = 1458$$

From 5 to 80 is 74 terms

$$s_{74} = \frac{1457(1-3^{74})}{1-3}$$

$$=\sum_{r=1}^{80} 2(3^{r+1}) - \sum_{r=1}^{4} 2(3^{r+1})$$

Way 2: Force the sum to start from 1

This says replace every r starting from 1 in each sequence

$$[2(3^{2}) + 2(3^{3}) + 2(3^{4}) + \cdots] - [2(3^{2}) + 2(3^{3}) + 2(3^{4})]$$

Each series is geometric with
$$r = \frac{2(3^{3})}{2(3^{2})} = 3$$
$$a = 2(3^{2}) = 18$$

$$= \frac{380 - 34}{1 - 3}$$
$$= \frac{18(1 - 3^{80})}{1 - 3} - \frac{18(1 - 3^4)}{1 - 3}$$

1 Bronze

- 1) Find the following by writing out a suitable series $\sum_{r=1}^{r=6} (r+1)$
- 2) Write down all the terms of the following
 - i. $\sum_{k=1}^{6} (2k+1)$
 - ii. $\sum_{k=3}^7 k^2$
 - iii. $\sum_{k=4}^{8} k(2^{2k-1})$
 - iv. $\sum_{k=100}^{100} (3k-7)$
- 3) Calculate $\sum_{r=1}^{r=5} 3r$
- 4) Calculate $\sum_{r=0}^{r=5} r(r+1)$
- 5) Calculate $\sum_{r=1}^{r=20} (4r+1)$
- 6) Calculate $\sum_{r=1}^{r=20} (5r-2)$
- 7) Find the value of $\sum_{r=1}^{42} (5r + 3)$

2 Silver

- Calculate $\sum_{n=1}^{n=20} 3n$ and $\sum_{n=21}^{n=100} 3n$ 8)
- Calculate $\sum_{r=10}^{r=30} (7+2r)$ 9)
- 10) Calculate $\sum_{r=3}^{r=6} (2^r 1)$
- 11) Calculate $\sum_{r=-1}^{r=4} (1.5^r)$
- 12) Expand $\sum_{r=4}^{7} 2^r$ as the sum of four terms
 - i.
 - Find the value of $\sum_{r=4}^{30} 2^r$ Explain why $\sum_{r=4}^{\infty} 2^r$ cannot be evaluated ii.
- 13) The r^{th} term of an arithmetic series is (2r 5)
 - Write down the first three terms of the series i.
 - ii. State the value of the common difference
 - iii. Show that $\sum_{r=1}^{n} (2r - 5) = n(n - 4)$
- 14) Prove that $\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$
- Find the value of $\sum_{r=1}^{6} 10 \times \left(\frac{2}{3}\right)^{r-1}$ 15)
- 16) Find the value of $\sum_{r=1}^{\infty} 10 \times \left(\frac{2}{3}\right)^{r-1}$
- Find the value of $\sum_{r=7}^{\infty} 10 \times \left(\frac{2}{3}\right)^{r-1}$ 17)
- 18) Find the value of $\sum_{r=4}^{\infty} 20 \times \left(\frac{1}{2}\right)^r$
- 19) Let $s_n = \sum_{r=1}^n (2r 3)$
 - Write down the first three terms of this series i.
 - Find S_{50} ii.
 - iii. Find n such that $S_n = 575$
- 20) Consider the geometric series $S_n = \sum_{r=1}^n 3 \times 5^{r-1}$ Given that $S_m = 7324218$, work out the value of m
- 21) For what value of n does $\sum_{r=1}^{n} (5r + 3)$ first exceed 1000
- 22) Given $\sum_{r=1}^{n} (100 3r) < 0$. Find the least value of the integer n

- 23) For what value of n would $\sum_{r=1}^{n} (100 4r) = 0$
- 24) Given that $\sum_{r=1}^{n} a_r = 12 + 4n^2$.
 - i.

```
Find the value of \sum_{r=1}^{5} a_r and the value of a_6
Given that \sum_{r=0}^{\infty} \frac{a}{4^r} = 16. Find the value of the constant a
ii.
```

- 25) The nth term of an arithmetic progression is denoted by u_n , and given by $u_n = 2n + 7$ Determine the value N given that $\sum_{n=1}^{N} u_n = 2100$
- 26) Show that $\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^n \cos((180n)^\circ) = \frac{9}{28}$
- 27) Find the value of k if $\sum_{r=1}^{\infty} k \left(\frac{1}{3}\right)^r = 7$
- 28) Rewrite 4+7+10+...+31 using sigma notation
- 29) Rewrite 40+36+32+...+0 using sigma notation
- 30) Rewrite $3+3^2+3^3+3^4+\cdots+3^8$ using sigma notation
- 31) Rewrite the multiples of 6 less than 100 using sigma notation

© MyMathsCloud

3 Gold

32) The third and the sixth term of a geometric progression is 27 and 8, respectively.

Show clearly that $\sum_{r=6}^{\infty} u_r = 24$, Where u_r is the rth term of the progression.

33) A geometric series, u_n has second term 375 and fifth term 81. Find the sum to infinity and hence the value of $\sum_{n=6}^{\infty} u_n$

3.1 With Logs

- 34) Show that the terms of $\sum_{r=1}^{m} \ln 3^r$ are in arithmetic series
 - i. Find the sum of the first 20 terms in this series
 - ii. Hence, show that $\sum_{r=1}^{2m} \ln 3^r = \ln 3 (2m^2 + m)$
- 35) Find $\sum_{r=1}^{50} \ln(2^r)$, giving the answer in the form aln2, where a $\in \mathbb{Q}$
- 36) The first three terms of a geometric sequence are lnx^{16} , lnx^8 , lnx^4 for x>0.
 - i.
 - Find the common ratio Solve $\sum_{k=1}^{\infty} 2^{5-k} lnx = 64$ ii.

© MyMathsCloud

4 Diamond

4.1 With Logs

- 37) Given that p is a positive constant,
- i.
- ii.
- Show that $\sum_{n=1}^{11} \ln(p^n) = k \ln p$, where k is a constant to be found Show that $\sum_{n=1}^{11} \ln(8p^n) = 33 \ln(2p^2)$ Hence find the set of values p for which $\sum_{n=1}^{11} \ln(8p^n) < 0$ giving your answer in set notation iii.
- 38) Find $\sum_{n=1}^{15} a_n^2$ where $a_n = lnx^n$
- 39) Show that $\sum_{n=1}^{48} \log_5 \left(\frac{n+2}{n+1} \right) = 2$
- 40) Show that $S = \sum_{n=1}^{\infty} \left(\frac{1}{n+1} \frac{1}{n+2} \right) = \frac{1}{2} \frac{1}{n+2}$

4.2 Two Series

- 41) Show that $\sum_{r=1}^{16} (3 + 5r + 2^r) = 131,798$
- 42) Find $\sum_{n=0}^{\infty} \frac{2^n + 4^n}{6^n}$
- 43) $\sum_{r=1}^{10} a + (r-1)d = \sum_{r=11}^{14} a + (r-1)d$. Show that d = 6a
- 44) An arithmetic series has first term *a* and common difference *d*. The sum of the first 15 terms is 1320 and the fifth term is 76
 - i. Find *a* and *d*
 - Given that $13(\sum_{n=1}^{15} u_n \sum_{n=1}^{k} u_n) = 9 \sum_{n=1}^{k} u_k$ ii. find the value of S_k

 - iii. Hence find the value of k

5 Challenges

5.1 Arithmetic

- 45) The first term of an arithmetic series is a and the common different is d The 25th term is 100.
 - The 5th term is 8 times larger than the 35th term of the series.
 - i. Find the values of a and the value of d
 - ii. Determine how many terms of the series as positive

The sum of the first n terms of the series is denoted by S_n iii. Calculate the maximum value of S_n

- 46) $\sum_{n=1}^{20} (2r + x) = 280$. Find the value of x that satisfies the equation.
- 47) The nth term of an arithmetic series is given by

$$u_n = \frac{5}{2}(5n+28)$$

The kth term of the series is 370.

- i. Find the value of k
- ii. Evaluate the sum $\sum_{n=1}^{k} u_n$
- 48) Find the value of the constant p, so that $\sum_{n=1}^{20} (25 + np) = 80$
- 49) A sequence is defined as $u_{r+1}=u_r-3$, $\,u_{1=117},\,n\geq 1$ Solve the equation $\sum_{r=1}^n u_r=0$
- 50) Find in simplified for the terms of n, the value of

$$\sum_{r=1}^{2n} (3r-2)(-1)^r$$

- 51) The rth term of an arithmetic progression is given by $u_r = 120 3r$ Determine the value N given that $\sum_{r=N}^{3N} u_r = 444$
- 52) An arithmetic progression has first term -10 and common difference 4. The nth term of the progression is denoted by u_n . Determine the value of k given that

$$\sum_{n=1}^{2k} u_n - \sum_{n=1}^k u_n = 1728$$

- 53) The sum of the first 25 terms of an arithmetic series if 1050 and its 25th term is 72.
 i. Find the first term and the common difference of the series.
 - The nth term of the series of denoted by u_n
 - ii. Given further that

$$117\left[\sum_{n=1}^{25} u_n - \sum_{n=1}^k u_n\right] = 233\sum_{n=1}^k u_n$$

© MyMathsCloud

Determine the value of k

54) The rth term of an arithmetic progression is denoted by u_r and satisfies $u_r = 4r - 7$ Solve the simultaneous equations

$$\sum_{r=K+1}^{N} u_r - \sum_{r=1}^{K} , u_r = 400$$

$$u_N - u_K = 40$$

5.2 Geometric

55) The sum of the geometric series is 2187.
 The (k-1)th and kth term of the same series are 96 and 64, respectively. Determine the value of

$$\sum_{k+1} u_n$$

Where u_n , is the nth term of the series. Determine the value of

56) It is given that

$$\sum_{r=1}^{n} u_r = 128 - 2^{7-n}$$

Where u_r is the rth term of the geometric progression.

- i. Find the sum of the first 8 terms of the progression
- ii. Determine the value of u_8
- iii. Find the common ratio

57) Determine the value n, given by $\sum_{r=1}^{n} 2^{2r-1} = 43690$

58) The nth term of a geometric series is denoted by u_n . It is given that

 $u_1 = 1458$ and $u_6 = 6$.

- Evaluate: $\sum_{n=7}^{\infty} u_n$
- 59) A family of an infinite geometric series S_k has a first term $\frac{k-1}{k!}$ and common ratio $\frac{1}{k'}$, where k = 3,4,5,6,...,99,100. Find the value of $\frac{10^4}{100!} + \sum_{k=3}^{100} [[(k-1)(k-2) - 1]S_k]$.
- 60) By showing a detailed method, sum the following series. Find the value of: 9^9

$$\sum_{r=0}^{7} [(r+1) \times 11^r \times 10^{9-r}]$$

You may leave your answer in index form

61) Show that the following equation how only one real solution

$$27n = 4\sum_{r=2}^{\infty} (1+n)^{-r}$$

62) Evaluate the following expression $\sum_{n=0}^{\infty} \sum_{m=0}^{n} \left(\frac{1}{2^{m+n}}\right)$. Detailed working must be shown.

63) Evaluate the following expression

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \left(\frac{1}{3^{m+n}}\right)$$

Detailed working must be shown.

64) It is given that the following series converges to the limit L.

$$\sum_{r=1}^{\infty} \left[\frac{2x-1}{x+2} \right]^r$$

© MyMathsCloud

Determine with full justification the range of possible values of L.

65) Solve the following simultaneous equations

$$2\sum_{r=0}^{\infty} [\log_2 a]^r = \sum_{k=1}^{\infty} [1+b]^{-k} \text{ and } 2\sum_{k=1}^{1} [1+b]^{-k} - \sum_{r=0}^{1} [\log_2 a]^r = \frac{7}{5}$$

.

Write your answers in index form where appropriate

66) The (k-1)th and kth terms of the convergent geometric progression are 108 and 81. Determine the value of 8

$$\sum_{n=k+1}^{\infty} u_n$$

Where u_n is the nth term of the series

67) It is given that

$$S_n = \sum_{k=1}^n \sum_{r=1}^k (2^r)$$

Show that

$$S_n = 2^{n+2} - 2n - 4$$

68) Evaluate showing clearly your method

$$S_n = \sum_{n=1}^{\infty} \frac{3^n - 2}{4^{n+1}}$$

69) It is given that 0 < r < 1, 0 < R < 1 and r < 2R. It is further given that

$$\sum_{n=0}^{\infty} R^n = \left(\sum_{n=0}^{\infty} r^n\right)^2$$

Show clearly that

$$\sum_{n=0}^{\infty} \left(\frac{r}{2R}\right)^n = \frac{2(2-r)}{3-2r}$$