Sequences \& Series: Sigma Notation

This sheet assumes that you already know how to deal with arithmetic and geometric series.

Table of Contents

1 Bronze 4
2 Silver 5
3 Gold 7
3.1 With Logs7
4 Diamond 8
4.1 With Logs 8
4.2 Two Series 8
5 Challenges 9
5.1 Arithmetic 9
5.2 Geometric 10

This is a long worksheet to cater for students that want extra practice. If you want a shortcut, but still be sure to cover one of each type then follow the pink highlighted questions.

- Higher level students should be able to do all questions up until diamond to be sure to get a 7 . The challenge section is there for anyone brave enough ©
- Standard level students should be able to do questions 1-36 and 41-42 to be sure to get a 7

Make sure you have covered the sequences and series: arithmetic and geometric worksheet first!

Reminders
Sigma notation \sum is another way to say sum

Step 1: Write a few terms out i.e. get rid of the sigma notation to see what the sequence looks like. To do this we replace the pink box with first 3 or 4 values of * (i.e. we just plug in the values to the expression in the pink box)

Step 2: Simplify each term and decide what type of sequence we have (the 3 or 4 terms written out above is enough for us to see the pattern).

- arithmetic - if the sequence has a common difference (adds or subtracts the same number each time
- geometric - if the sequence has a common ratio (multiplies or divides by the same number each time)
- periodic - if the sequence repeats after a certain number of terms

For example,
$>$ let's say we have the general sequence a, b, c, d

$$
\begin{aligned}
& \text { If } b-a=c-b \Rightarrow \text { series is arithmetic } \\
& \qquad \text { If } \frac{b}{a}=\frac{c}{b} \Rightarrow \text { series is geometric }
\end{aligned}
$$

$>$ If we have the general sequence a, b, c, a, b, c then we said the sequence is periodic of order 3 (since it repeats every 3 terms)
Step 3: The sigma notation is related to the sum formula that you should be familiar with for geometric and arithmetic series. We can use the s_{n} formula for arithmetic or geometric.

- $\quad \sum_{r=1}^{n} \ldots=S_{n}$
- $\quad \sum_{r=m}^{n} \ldots$

The sum must start from 1 to use s_{n} formula $\Rightarrow \sum_{r=m}^{n} \ldots=\sum_{r=1}^{n} \ldots-\sum_{r=1}^{m-1} \ldots=S_{n}-S_{m-1}$
Note: This has $n-m+1$ terms

- $\quad \sum_{r=1}^{\infty} \ldots=S_{\infty}$
- $\quad \sum_{r=m}^{\infty} \ldots=S_{\infty}-S_{m-1}$ or we can just find the first term for that sum, call it a and find $\frac{a}{1-r}$

Examples:

$$
\sum_{r=1}^{r=6}(r+1)
$$

Let's colour code to explain

$$
\sum_{r=1}^{r=6}(r+1)
$$

In English, this says replace every r starting from 1 in the expression $(r+1)$ and go all the way to 6 .
We add (\sum means add) all these terms found.
Step 1: Write a few terms out i.e. get rid of the sigma notation to see what the sequence looks like.

$$
\sum_{r=1}^{r=6}(r+1)
$$

To do this we replace $(r+1)$ with the values of r
We know r starts at 1 and ends at 6
This is not many terms so it's easy to write them all out. Normally we just write out the first 3 or 4
terms which is enough to spot the pattern from afterwards

$$
(1+1)+(2+1)+(3+1)+(4+1)+(5+1)+(6+1)
$$

Step 2: Decide what type of series we have

$$
=2+3+4+5+6+7
$$

Here we keep adding 1 each time so we have an arithmetic sequence with $a=2$ and $d=1$
Step 3: Find the sum
Way 1: Since we only have a few terms we can find the sum easily: $2+3+4+5+6+7=27$
Way 2: use the s_{n} formula for an arithmetic series with $a=2$ and $d=1$. We would do this way if we had more terms we only have 6 terms here

$$
S_{6}=\frac{6}{2}[2(2)+(6-1)(1)]=27
$$

What happens if we have more terms?

$$
\sum_{r=1}^{r=50}(4 r+1)
$$

In English, this says replace every r starting from 1 in the expression $(r+1)$ and go all the way to 50 .
We add (\sum means add) all these terms found.
Step 1: Write a few terms out i.e. get rid of the sigma notation to see what the sequence looks like.

$$
\sum_{r=1}^{r=50}(4 r+1)
$$

To do this we replace $(4 r+1)$ with the values of r We know r starts at 1 and ends at 50

Simplifying gives the sequence

$$
\begin{gathered}
(4+1)+(8+1)+(12+1)+\cdots+(50+1) \\
5+9+13+\ldots+201
\end{gathered}
$$

This is arithmetic with $\mathrm{a}=5$ and $\mathrm{d}=4$ and n is 50 (50 terms). If you didn't realise there are 50 terms, you could set $u_{n}=201$ using the formula and solve for n

Using s_{n} formula

$$
s_{50}=\frac{50}{2}[2(5)+(50-1)(4)]=25(10+196)=5150
$$

What happens if our series doesn't start from 1 ?

$$
\sum_{r=5}^{r=80} 2\left(3^{r+1}\right)
$$

Way 1:
The sum says replace every r starting from 5

$$
2\left(3^{6}\right)+2\left(3^{7}\right)+2\left(3^{8}\right)+\cdots
$$

This is geometric since we are multiplying by 3 each time

$$
\begin{gathered}
r=\frac{2\left(3^{7}\right)}{2\left(3^{6}\right)}=3 \\
a=2\left(3^{6}\right)=1458
\end{gathered}
$$

From 5 to 80 is 74 terms

$$
s_{74}=\frac{1457\left(1-3^{74}\right)}{1-3}
$$

Way 2: Force the sum to start from 1

$$
=\sum_{r=1}^{80} 2\left(3^{r+1}\right)-\sum_{r=1}^{4} 2\left(3^{r+1}\right)
$$

This says replace every r starting from 1 in each sequence

$$
\left[2\left(3^{2}\right)+2\left(3^{3}\right)+2\left(3^{4}\right)+\cdots\right]-\left[2\left(3^{2}\right)+2\left(3^{3}\right)+2\left(3^{4}\right)\right]
$$

Each series is geometric with

$$
\begin{gathered}
r=\frac{2\left(3^{3}\right)}{2\left(3^{2}\right)}=3 \\
a=2\left(3^{2}\right)=18 \\
=S_{80}-S_{4} \\
=\frac{18\left(1-3^{80}\right)}{1-3}-\frac{18\left(1-3^{4}\right)}{1-3}
\end{gathered}
$$

1 Bronze

1) Find the following by writing out a suitable series $\sum_{r=1}^{r=6}(r+1)$
2) Write down all the terms of the following
i. $\quad \sum_{k=1}^{6}(2 k+1)$
ii. $\quad \sum_{k=3}^{7} k^{2}$
iii. $\sum_{k=4}^{8} k\left(2^{2 k-1}\right)$
iv. $\sum_{k=100}^{100}(3 k-7)$
3) Calculate $\sum_{r=1}^{r=5} 3 r$
4) Calculate $\sum_{r=0}^{r=5} r(r+1)$
5) Calculate $\sum_{r=1}^{r=20}(4 r+1)$
6) Calculate $\sum_{r=1}^{r=20}(5 r-2)$
7) Find the value of $\sum_{r=1}^{42}(5 r+3)$

2 Silver

8) Calculate $\sum_{n=1}^{n=20} 3 n$ and $\sum_{n=21}^{n=100} 3 n$
9) Calculate $\sum_{r=10}^{r=30}(7+2 r)$
10) Calculate $\sum_{r=3}^{r=6}\left(2^{r}-1\right)$
11) Calculate $\sum_{r=-1}^{r=4}\left(1.5^{r}\right)$
12) Expand $\sum_{r=4}^{7} 2^{r}$ as the sum of four terms
i. Find the value of $\sum_{r=4}^{30} 2^{r}$
ii. Explain why $\sum_{r=4}^{\infty} 2^{r}$ cannot be evaluated
13) The $r^{\text {th }}$ term of an arithmetic series is (2r-5)
i. Write down the first three terms of the series
ii. State the value of the common difference
iii. Show that $\sum_{r=1}^{n}(2 r-5)=n(n-4)$
14) Prove that $\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)$
15) Find the value of $\sum_{r=1}^{6} 10 \times\left(\frac{2}{3}\right)^{r-1}$
16) Find the value of $\sum_{r=1}^{\infty} 10 \times\left(\frac{2}{3}\right)^{r-1}$
17) Find the value of $\sum_{r=7}^{\infty} 10 \times\left(\frac{2}{3}\right)^{r-1}$
18) Find the value of $\sum_{r=4}^{\infty} 20 \times\left(\frac{1}{2}\right)^{r}$
19) Let $s_{n}=\sum_{r=1}^{n}(2 r-3)$
i. Write down the first three terms of this series
ii. Find S_{50}
iii. Find n such that $S_{n}=575$
20) Consider the geometric series $S_{n}=\sum_{r=1}^{n} 3 \times 5^{r-1}$ Given that $S_{m}=7324218$, work out the value of m
21) For what value of n does $\sum_{r=1}^{n}(5 r+3)$ first exceed 1000
22) Given $\sum_{r=1}^{n}(100-3 r)<0$. Find the least value of the integer n
23) For what value of n would $\sum_{r=1}^{n}(100-4 r)=0$
24) Given that $\sum_{r=1}^{n} a_{r}=12+4 n^{2}$.
i. Find the value of $\sum_{r=1}^{5} a_{r}$ and the value of a_{6}
ii. Given that $\sum_{r=0}^{\infty} \frac{a}{4^{r}}=16$. Find the value of the constant a
25) The $\mathrm{n}^{\text {th }}$ term of an arithmetic progression is denoted by u_{n}, and given by $u_{n}=2 n+7$ Determine the value N given that $\sum_{n=1}^{N} u_{n}=2100$
26) Show that $\sum_{n=2}^{\infty}\left(\frac{3}{4}\right)^{n} \cos (180 n)^{\circ}=\frac{9}{28}$
27) Find the value of k if $\sum_{r=1}^{\infty} k\left(\frac{1}{3}\right)^{r}=7$
28) Rewrite $4+7+10+\ldots+31$ using sigma notation
29) Rewrite 40+36+32+...+0 using sigma notation
30) Rewrite $3+3^{2}+3^{3}+3^{4}+\cdots+3^{8}$ using sigma notation
31) Rewrite the multiples of 6 less than 100 using sigma notation

3 Gold

32) The third and the sixth term of a geometric progression is 27 and 8 , respectively.

Show clearly that $\sum_{r=6}^{\infty} u_{r}=24$, Where u_{r} is the $r^{\text {th }}$ term of the progression.
33) A geometric series, u_{n} has second term 375 and fifth term 81 . Find the sum to infinity and hence the value of $\sum_{n=6}^{\infty} u_{n}$

3.1 With Logs

34) Show that the terms of $\sum_{r=1}^{m} \ln 3^{r}$ are in arithmetic series
i. Find the sum of the first 20 terms in this series
ii. Hence, show that $\sum_{r=1}^{2 m} \ln 3^{r}=\ln 3\left(2 m^{2}+m\right)$
35) Find $\sum_{r=1}^{50} \ln \left(2^{r}\right)$, giving the answer in the form aln 2 , where $a \in \mathbb{Q}$
36) The first three terms of a geometric sequence are $\ln x^{16}, \ln x^{8}, \ln x^{4}$ for $x>0$.
i. Find the common ratio
ii. Solve $\sum_{k=1}^{\infty} 2^{5-k} \ln x=64$

4 Diamond

4.1 With Logs

37) Given that p is a positive constant,
i. Show that $\sum_{n=1}^{11} \ln \left(p^{n}\right)=k \ln p$, where k is a constant to be found
ii. Show that $\sum_{n=1}^{11} \ln \left(8 p^{n}\right)=33 \ln \left(2 p^{2}\right)$
iii. Hence find the set of values p for which $\sum_{n=1}^{11} \ln \left(8 p^{n}\right)<0$ giving your answer in set notation
38) Find $\sum_{n=1}^{15} a_{n}{ }^{2}$ where $a_{n}=\ln x^{n}$
39) Show that $\sum_{n=1}^{48} \log _{5}\left(\frac{n+2}{n+1}\right)=2$
40) Show that $S=\sum_{n=1}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)=\frac{1}{2}-\frac{1}{n+2}$

4.2 Two Series

41) Show that $\sum_{r=1}^{16}\left(3+5 r+2^{r}\right)=131,798$
42) Find $\sum_{n=0}^{\infty} \frac{2^{n}+4^{n}}{6^{n}}$
43) $\sum_{r=1}^{10} a+(r-1) d=\sum_{r=11}^{14} a+(r-1) d$. Show that $d=6 a$
44) An arithmetic series has first term a and common difference d. The sum of the first 15 terms is 1320 and the fifth term is 76
i. Find a and d

Given that $13\left(\sum_{n=1}^{15} u_{n}-\sum_{n=1}^{k} u_{n}\right)=9 \sum_{n=1}^{k} u_{k}$
ii. find the value of S_{k}
iii. Hence find the value of k

5 Challenges

5.1 Arithmetic

45) The first term of an arithmetic series is a and the common different is d

The $25^{\text {th }}$ term is 100 .
The $5^{\text {th }}$ term is 8 times larger than the $35^{\text {th }}$ term of the series.
i. Find the values of a and the value of d
ii. Determine how many terms of the series as positive

The sum of the first n terms of the series is denoted by S_{n}
iii. Calculate the maximum value of S_{n}
46) $\quad \sum_{n=1}^{20}(2 r+x)=280$. Find the value of x that satisfies the equation.
47) The $n^{\text {th }}$ term of an arithmetic series is given by

$$
u_{n}=\frac{5}{2}(5 n+28)
$$

The $\mathrm{k}^{\text {th }}$ term of the series is 370 .
i. Find the value of k
ii. Evaluate the sum $\sum_{n=1}^{k} u_{n}$
48) Find the value of the constant p, so that $\sum_{n=1}^{20}(25+n p)=80$
49) A sequence is defined as $u_{r+1}=u_{r}-3, u_{1=117}, n \geq 1$

Solve the equation $\sum_{r=1}^{n} u_{r}=0$
50) Find in simplified for the terms of n, the value of

$$
\sum_{r=1}^{2 n}(3 r-2)(-1)^{r}
$$

51) The $r^{\text {th }}$ term of an arithmetic progression is given by $u_{r}=120-3 r$ Determine the value N given that $\sum_{r=N}^{3 N} u_{r}=444$
52) An arithmetic progression has first term -10 and common difference 4. The $n^{\text {th }}$ term of the progression is denoted by u_{n}. Determine the value of k given that

$$
\sum_{n=1}^{2 k} u_{n}-\sum_{n=1}^{k} u_{n}=1728
$$

53) The sum of the first 25 terms of an arithmetic series if 1050 and its $25^{\text {th }}$ term is 72 .
i. Find the first term and the common difference of the series.

The $\mathrm{n}^{\text {th }}$ term of the series of denoted by u_{n}
ii. Given further that

$$
117\left[\sum_{n=1}^{25} u_{n}-\sum_{n=1}^{k} u_{n}\right]=233 \sum_{n=1}^{k} u_{n}
$$

www.mymathscloud.com
© MyMathsCloud
Determine the value of k
54) The $\mathrm{r}^{\text {th }}$ term of an arithmetic progression is denoted by u_{r} and satisfies $u_{r}=4 r-7$ Solve the simultaneous equations

$$
\begin{gathered}
\sum_{r=K+1}^{N} u_{r}-\sum_{r=1}^{K}, u_{r}=400 \\
u_{N}-u_{K}=40
\end{gathered}
$$

5.2 Geometric

55) The sum of the geometric series is 2187.

The $(k-1)^{\text {th }}$ and $k^{\text {th }}$ term of the same series are 96 and 64 , respectively. Determine the value of

$$
\sum_{n=k+1}^{\infty} u_{n}
$$

Where u_{n}, is the $\mathrm{n}^{\text {th }}$ term of the series. Determine the value of
56) It is given that

$$
\sum_{r=1}^{n} u_{r}=128-2^{7-n}
$$

Where u_{r} is the $r^{\text {th }}$ term of the geometric progression.
i. Find the sum of the first 8 terms of the progression
ii. Determine the value of u_{8}
iii. Find the common ratio
57) Determine the value n, given by $\sum_{r=1}^{n} 2^{2 r-1}=43690$
58) The $\mathrm{n}^{\text {th }}$ term of a geometric series is denoted by u_{n}. It is given that

$$
u_{1}=1458 \text { and } u_{6}=6
$$

Evaluate: $\sum_{n=7}^{\infty} u_{n}$
59) A family of an infinite geometric series S_{k} has a first term $\frac{k-1}{k!}$ and common ratio $\frac{1}{\mathrm{k}^{\prime}}$, where $k=3,4,5,6, \ldots, 99,100$.
Find the value of $\frac{10^{4}}{100!}+\sum_{k=3}^{100}\left[[(k-1)(k-2)-1] S_{k}\right]$.
60) By showing a detailed method, sum the following series. Find the value of:

$$
\sum_{r=0}^{9}\left[(r+1) \times 11^{r} \times 10^{9-r}\right]
$$

You may leave your answer in index form
61) Show that the following equation how only one real solution

$$
27 n=4 \sum_{r=2}^{\infty}(1+n)^{-r}
$$

62) Evaluate the following expression $\sum_{n=0}^{\infty} \sum_{m=0}^{n}\left(\frac{1}{2^{m+n}}\right)$. Detailed working must be shown.
63) Evaluate the following expression

$$
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty}\left(\frac{1}{3^{m+n}}\right)
$$

Detailed working must be shown.
64) It is given that the following series converges to the limit L .

$$
\sum_{r=1}^{\infty}\left[\frac{2 x-1}{x+2}\right]^{r}
$$

Determine with full justification the range of possible values of L .
65) Solve the following simultaneous equations

$$
2 \sum_{r=0}^{\infty}\left[\log _{2} a\right]^{r}=\sum_{k=1}^{\infty}[1+b]^{-k} \quad \text { and } \quad 2 \sum_{k=1}^{1}[1+b]^{-k}-\sum_{r=0}^{1}\left[\log _{2} a\right]^{r}=\frac{7}{5}
$$

Write your answers in index form where appropriate
66) The $(k-1)^{\text {th }}$ and $k^{\text {th }}$ terms of the convergent geometric progression are 108 and 81 . Determine the value of

$$
\sum_{n=k+1}^{\infty} u_{n}
$$

Where u_{n} is the $\mathrm{n}^{\text {th }}$ term of the series
67) It is given that

$$
S_{n}=\sum_{k=1}^{n} \sum_{r=1}^{k}\left(2^{r}\right)
$$

Show that

$$
S_{n}=2^{n+2}-2 n-4
$$

68) Evaluate showing clearly your method

$$
S_{n}=\sum_{n=1}^{\infty} \frac{3^{n}-2}{4^{n+1}}
$$

69) It is given that $0<r<1,0<R<1$ and $r<2 R$. It is further given that

$$
\sum_{n=0}^{\infty} R^{n}=\left(\sum_{n=0}^{\infty} r^{n}\right)^{2}
$$

Show clearly that

$$
\sum_{n=0}^{\infty}\left(\frac{r}{2 R}\right)^{n}=\frac{2(2-r)}{3-2 r}
$$

